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A Confidence-Set Approach for Finding Tightly Linked Genomic Regions
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As more studies adopt the approach of whole-genome screening, geneticists are faced with the challenge of having
to interpret results from traditional approaches that were not designed for genome-scan data. Frequently, two-point
analysis by the LOD method is performed to search for signals of linkage throughout the genome, for each of
hundreds or even thousands of markers. This practice has raised the question of how to adjust the significance
level for the fact that multiple tests are being performed. Various recommendations have been made, but no consensus
has emerged. In this article, we propose a new method, the confidence-set approach, that circumvents the need to
correct for the level of significance according to the number of markers tested. In the search for the gene location
of a monogenic disorder, multiplicity adjustment is not needed in order to maintain the desired level of confidence.
For complex diseases involving multiple genes, one needs only to adjust the level of significance according to the
number of disease genes—a much smaller number than the number of markers in a genome screen—to ensure a
predetermined genomewide confidence level. Furthermore, our formulation of the tests enables us to localize disease
genes to small genomic regions, an extremely desirable feature that the traditional LOD method lacks. Our simulation
study shows that, for sib-pair data, even when the coverage probability of the confidence set is chosen to be as

high as 99%, our approach is able to implicate only the markers that are closely linked to the disease genes.

Introduction

With the whole-genome-scan approach becoming al-
most a routine matter, geneticists are faced with the chal-
lenge of having to interpret results from traditional ap-
proaches, as well as having to find statistical methods
that are more appropriate in this setting. As a first path
to identifying linked genomic regions, two-point analysis
by the LOD method (Morton 1955) is usually performed
for each marker (Ott 1999, p. 114), with the number
of markers for a genome-scan study ranging from a few
hundred to a couple thousand. Each analysis (i.e., the
analysis for each marker 71) amounts to testing the null
hypothesis of no linkage, H,,,:0,, = 1/2, versus the al-
ternative hypothesis of linkage, H,,:0,, < 1/2, where 6,
is the recombination fraction between a disease gene and
marker .

The original recommendation, which declares signif-
icance for linkage when the LOD score is =3 (Morton
1955) and which was not proposed for the purpose of
the genome scan, has been the focal point of an ongoing
debate about the mapping of complex traits. During the
1980s, rapid progress in molecular genetics provided a
large number of RFLP markers for gene mapping. In
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light of the potential for inflated type I error (i.e., the
declaration that linkage exists when, in fact, it is absent)
when multiple markers are tested by the LOD method,
several different cutoffs were proposed, based on diverse
arguments, including exact calculation, Bonferroni cor-
rection, and Bayesian formulation (Kidd and Ott 1984;
Thompson 1984; Ott 1985; Edwards and Watt 1989;
Risch 1991). With many studies now based on as many
as thousands of microsatellite markers throughout the
genome, the problem caused by multiple testing be-
comes more severe, prompting the current ongoing de-
bate (Lander and Kruglyak 1995; Curtis 1996; Witte et
al. 1996; Sawcer et al. 1997; Morton 1998; Zhao et al.
1999).

The central issue of the debate is how to reduce the
type I error rate to an acceptable level genomewide yet
still be able to detect signals for linkage when multiple
tests are performed. Many of the proposed ideas involve
controlling the traditional type 1 error associated with
the LOD method. We refer to the type I error associated
with the LOD method (i.e., the inference of false link-
age) as the “traditional” type I error, to distinguish it
from the type I error that is associated with the pro-
cedure that we are proposing in this article. The simple
LOD-score cutoff of 3 is generally regarded as not being
stringent enough to avoid too many false declarations
of linkage, for complex traits, when multiple tests are
performed. There were several cutoff values, for differ-
ent scenarios, given by Lander and Kruglyak (1995),
the most often quoted being 3.6 (e.g., see Zhao et al.
1999). Others have proposed cutoff values between 3
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and 3.6, all in the hope of maintaining a genomewide
error rate of <5% (e.g., see Sawcer et al. 1997; Morton
1998). Apart from the traditional type I error, other
measures of genomewide significance include the false-
discovery rate (Drigalenko and Elston 1997), false-pos-
itive—prediction error (FPP) and the related reliability
index (Morton 1998), and expected number of false-
positive errors (Zhao et al. 1999). Similar measures are
discussed with respect to our formulation in the present
study.

In the early days of human linkage mapping, before
the development of DNA variants, the number of ge-
netic markers (mostly blood groups and enzymes) was
limited; only as many as 60 classic marker loci were
available (Ott 1999). Because of the limited availability
of markers when the LOD method was proposed, the
strategy was to find any marker that was linked to the
disease locus. Such a marker, if it exists, may be only
loosely linked to the disease locus (with a recombination
fraction [A] between the two loci of, say, .3). A distance
of 6 < .3 is generally regarded as mappable (Risch 1991;
Drigalenko and Elston 1997); hence, any marker lo-
cated less than that distance from the disease locus has
a good chance of being identified as linked, provided
that there is sufficient statistical power. In fact, for da-
ta from fully informative meioses, for example, any
marker residing on the same chromosome as that har-
boring the disease locus will test positive for linkage
asymptotically, owing to the fact that the LOD score
will approach infinity as the amount of data increases.

In the context of genome-scan studies with markers
spanning the genome at a density of, say, 10 cM, many
markers will provide significant signals for linkage even
when the type I error is controlled to be less than 5%
(or when any of the aforementioned measures are being
controlled). We suggest that control of traditional type
I error should not be the focus in genome-scan studies.
Identification of all markers that are mappable should
no longer, in our view, be the primary goal, now that
dense maps of markers are available. We believe that
the focus should shift to the localization of disease genes
to small chromosomal regions, even at the stage of pre-
liminary genome screening.

The present study proposes a new statistical proce-
dure for identification of tight linkage (with, say, <3
cM between the marker and disease loci). The approach
is designed to identify only the markers that are within
a specified (small) distance d, (in cM) of a disease locus.
The idea is to construct a confidence set of markers,
with coverage probability at a predetermined level, p;
in other words, we want to compile a set of markers
that will allow us to say, with confidence 100p %, that
every disease gene is within d, of one of the markers in
the set. The distance d,, is usually chosen to be such
that, asymptotically, for a map of equally spaced mark-
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ers, only one unique marker for each disease gene is
included in the confidence set, provided that the disease
locus is not exactly halfway between two markers. This
ensures that, with sufficient data, only markers that are
tightly linked to a disease locus are included in the con-
fidence set, and our method thereby effectively identifies
small genomic segments that may contain disease genes.
Furthermore, multiplicity adjustment for the number of
markers is not needed, even when thousands of markers
are tested one by one.

We would like to mention, in passing, that the prob-
lem that we are addressing in the present study is dif-
ferent from the problem that was discussed by Elston
and Lange (1975) and Lange and Boehnke (1982), al-
though the two problems are related. The issue in those
studies was the determination of the number of random
markers that were needed to cover the genome such
that the probability was high that there was a marker
within a certain distance of a disease locus. One may
view our problem as the exact opposite. Here, we have
a fixed map of markers covering the genome, and we
are interested in finding disease genes that are located,
with a high level of confidence, within a certain distance
of the nearest markers.

Methods

Construction of a Confidence Set

Suppose that we have M markers along the chromo-
somes, with the largest intermarker distance denoted by
d.Letd, = d/2. Then, for a disease locus in the genome,
there exists a marker that is within d,, of the disease gene.
The goal is to find a set of markers, A, that will, with
probability p, include at least one such marker. Such a
set of markers is referred to as a “confidence set” with
coverage probability p. If all the markers are equally
spaced and the disease locus is not located exactly halfway
between two markers, then there is a unique marker,
m*, that is within d,, of the disease gene. Although our
procedure works under the general scenario, we focus our
discussion below on the somewhat restricted setting of a
unique marker, for the purpose of presentation. Thus, we
want to find A such that P(m* € A) = p.

By the duality of confidence set and hypothesis testing
(Bickel and Doksum 1977), constructing a confidence
set is equivalent to testing the following hypotheses for
each marker m:

H,,:d,<d,vs.H,,:d,>d,,
where d,, is the true but unknown distance between a
disease locus and marker #1. Since we are dealing with a
two-locus analysis, it is more natural to represent distance
between two loci in terms of 6 rather than in terms of
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genetic distance. Let 8,, and 6, be the 6 values correspond-
ing to d,, and d,, respectively. The equivalent hypotheses
are: Hy,,: 0,, <6, and H,,,: 0, > 0,. The generalized like-

lihood-ratio test statistic is

sup L(0,,) 1 if 6, <0,
A = 0,,=0o — L
" L(6 (o) .~
,sup (6,,) L) if 6,,> 6,

where ém is the maximum-likelihood estimate (MLE) of
an (assumed) unimodal likelihood function L(4,,). We
need to find ¢, (<1) such that

) -a

where o = 1 — p is the type I error of our test. Then
A = {m:\,, = ¢ }is a confidence set with coverage prob-
ability P(m* € A) = F, (\,,=¢c,)=1—a =p.

In the following two subsections, we derive confidence
sets for two family types—the phase-known (PK) double
backcross and the phase-unknown (PU) double back-
cross—to illustrate our procedure. In both family types,
each offspring has one doubly homozygous parent (not
informative for linkage) and one doubly heterozygous
parent. The phase of the doubly heterozygous parent is
known in the PK family type but is unknown in the PU
family type. These two data types are frequently used
by researchers when they are investigating exact prop-
erties of proposed procedures (e.g., see the report by Ott
[1999]). We assume, in the derivation of the formulae
below, that # families with two offspring (sib pairs [SPs])
per family are available.

L(6,)
s p(ﬁ—<
o\ L(6,,)

PK Sib-Pair Data

For marker 1, let 6,, be the true recombination fraction
between the marker and the disease locus. The PK double
backcross allows unambiguous classification of recom-
bination events. Let S,, = >%_, X, be the number of re-
combinants in the total of 27 meioses, where X, is the
number of recombinants in SP i. Let x = {x,,-*-,x,} be
a realization of X = {X,, -+, X, }. Then the likelihood for

0, 1s

- (9%) 05(1 =6, oc (1 = 6,,)" ",

where s,, is a realization of S,,. Thus S,, is a sufficient
statistic for 6,,, and the generalized likelihood-ratio test
amounts to rejection of the null hypothesis (tight link-
age) when S, is large. To control the type I error of our
test to be a, we need to find ¢, such that
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supF, (S, >c¢,) = a.

0,,=<00

We wish to reiterate that controlling for type I error in
our test differs from controlling the traditional type 1
error of false linkage in the LOD method, since the null
hypotheses being tested in the two situations are differ-
ent; in fact, what we are controlling in our test is the
coverage probability of a confidence set.

Since larger 6 values lead to greater chances of re-
combination,

sup F, (S,,>¢c,) = B,(S,>c,)

0,,<0p

2n

m

>

Sm>Co

0 (1 — 0,

~1— ¢, — 2nb,
2nb,(1 - 6,)|’

where ® is the cumulative distribution function of the
standard normal variate. Although one may find the ex-
act type I error by summing over the binomial proba-
bilities, one can also approximate this probability by
using the central-limit theorem (CLT), as shown in the
last expression of the formulae above, as long as 216,
is sufficiently large (say, =10). Using the normal ap-
proximation formula, we find that

¢, = 2nf, + & (1 — a)\2n0,(1 — ;) .

The confidence set, A = {m:s,, < c_}, has coverage prob-
ability of at least 1 — oz

Pm* e A) =P, (S,-<c,)

=1 = B,(S,>c.)
=1—-a;

that is, we are at least 100(1 — «)% confident that the set
A includes m*, the only marker that is less than d, from
the disease.

PU Sib-Pair Data

For marker m, let 6,, be as defined above in the PK
data type. Let X, be the number of recombinants under
one of the two phases of the heterozygous parent, for
sib pair 7. Let S,, = ¥7_, min{X,,2 — X,} be the number
of families that has exactly one recombinant under one
of the phases. Under the assumption of linkage equilib-
rium, the two phases are equally likely; so the likelihood
function for 6,, is
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m

H1 =0, 21,

where s,, is a realization of S,,. Thus, S,, is a sufficient
statistic for 0,,. As an aside for the more theoretically
inclined reader, S,, is, in fact, minimal sufficient. Further-
more, similar sufficient statistics can be found for the PU
double backcross with k offspring, for k >2 (Rogers et
al. 2001).

The generalized likelihood-ratio test again amounts to
rejection of the null hypothesis when S,, is large. As
shown in Appendix A,

sup F, (S,,>¢,) = F,(S,>c.) .

0,=00

Since the distribution of §,, can be derived exactly, one
may perform exact calculation of F, (S>c¢,) to find a
¢, such that the type I error is, at most, «. Alternatively,
since S,, is the sum of independent and identically dis-
tributed random variables, we can approximate the
probability by the CLT, leading to a satisfactory estimate
of the critical value,

¢, = 2nb,(1 — 6,)

+@ (1 — a)V2n0,(1 — 6,)[1 — 26,(1 — 6,)] ,

when 216,(1 — 6,) is =10. The resulting confidence set
A = {m:S,, < ¢} can be shown, as in the previous sub-
section, to have a coverage probability of at least 1 —
.

It is interesting to note that a statistic similar to S,, was
proposed, by Bernstein (1931), for estimation of 6. This
statistic, Y = >"_, X,(2 — X,), was, however, shown, by
Fisher (1935), to be less efficient than the MLE, owing
to the waste of linkage information. The statistic S,,, on
the other hand, is fully efficient.

Expected Number of Markers in Confidence Set

The expected number of false-positive errors is con-
ventionally defined as the expected number of markers
that are unlinked to the disease but that are inferred, by
a statistical test, to be linked. This number may be used
as a measure of genomewide significance (Zhao et al.
1999). In our formulation for finding tightly linked ge-
nomic regions, a similar measure is the expected number
of markers included in the confidence set. The expected
number of false inclusions, defined as the number of
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markers that are more than d, from any disease locus
but that are included in the confidence set, is another
closely related measure. If there is a unique marker
within d, of each disease locus, then, ideally, we would
like the confidence set to be composed of these markers
only—that is, without any false inclusion. However, for
a finite data set, by controlling the coverage probability
to be p, we would expect the number of markers con-
tained in the confidence set to be greater than the number
of disease genes. Therefore, a confidence set with a
smaller number of false inclusions is considered to be
better than one with a greater number of false inclusions,
provided that both sets have the same coverage proba-
bility. For a confidence set constructed through use of
the procedure proposed in this article, the expected num-
ber of false inclusions is a function of the sample size,
as is shown in the next subsection.

Sample Size and False Inclusions

Recall that, for the PK family data, when the critical
value is chosen to be

¢, = 2nf, + (1 — a)\2nb,(1 — 6,) ,

the formula for controlling the coverage probability
(type I error of our test),

sup F(S,, >¢,) = a,

0<0,

holds, approximately; that is, the coverage probability
of A = {m:S,<c,}isatleast p = 1 — a. We want to
find the smallest sample size # (number of families) such
that, with probability g, a marker located at a distance
6 (>0,) from the disease locus will not be included in the
confidence set. This implies that g = B(S,, > c,). Appli-
cation of normal approximation leads to the following
sample-size formula:

n = ’-[cbl(l — )V26,(1 — 6y)

41— N30T B)] 400 eo>;‘ .

where [ Tis the ceiling of the number being bracketed
(i.e., the smallest integer that is greater than or equal to
the number). The probability g is the power of our test.
Requiring a smaller number of expected false inclusions
implies a greater power, which, in turn, requires a larger
sample size, as confirmed by the sample-size formula
above.

Similarly, we obtain an approximation formula for
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Table 1

Number of PK Families Necessary to Satisfy the
Specifications.

NoO. OF FAMILIES AT POWER ="

da

(€M) 99%  95%  90%  85%  80%
6 6,643 4772 3901 3363 2,963
7 1,820 1,292 1,048 897 786
8 878 618 497 424 369
9 533 371 297 252 219
10 365 253 201 170 147
11 271 186 148 124 107
12 211 144 114 96 82
13 71 17 92 77 66
14 143 97 76 63 54
15 122 82 64 53 45

NOTE.—Numbers are computed from equation
(1), based on normal approximation.

*d,=5cM.

® For all levels of power, the coverage probability
of the confidence set is controlled to be 99%.

¢ The sample size for this particular setting may
not be estimated very accurately, because of normal
approximation with a small expected cell count.

calculation of the number of PU families that are needed
in order to meet the desired specifications:

n= ’-l<1>1(1 — a)\20,(1 — 6,)[1 — 26,(1 — 6,)]

2

—& (1 — g)v260(1 — 9)[1 — 26(1 — 0)]]

ﬂﬂl—w—%ﬂ—0Mﬂ- (2)

Setup of a Simulation Study

To compare and contrast results from the LOD
method and the confidence-set approach, as well as to
investigate the influences that several mapping param-
eters have on the outcomes of the procedure proposed
in this article, we performed a simulation study with
data from PK and PU SPs. In most of the simulations,
250 SPs were used. Each chromosome was usually as-
sumed to be covered by 30 equally spaced markers 10
cM apart. The disease gene was assumed to be located
between markers 15 and 16, 1 cM from the former. The
coverage probability was controlled to be 99%. For each
parameter under investigation, values that differ from
these general settings were specified when they occurred.
A total of 1,000 replications were used for each sim-
ulation.
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Results

Sample-Size Determination

Table 1 shows the minimum sample sizes required for
various levels of power, computed from equation (1), for
the PK-family data type. We assume thatd, = 5 ¢cM and
we control the confidence set to have 99% coverage
probability. Each entry in the table gives the sample size
needed for a marker, located at distance d (>d,) from
the disease locus, not to be included in the confidence
set with the specified probability (power). For example,
if one desires that, with probability 99%, any marker
located more than d, from the disease locus should not
be included, then a few thousand PK SPs are needed.
On the other hand, if an equally spaced map with a 10-
c¢M marker density is being used, then any marker that
is not one of the two markers flanking the disease locus
is located =10 cM from the disease locus. This implies
that, with high probability, only a couple hundred SPs
are needed for the confidence set to exclude markers that
do not flank the disease gene. Table 2 gives the results,
using equation (2), for the PU-family data type. As ex-
pected, more PU families than PK families are required
in order to achieve the same specifications of powers
and coverage probabilities. The increases in the numbers
of families are 12%-29%, with an average increase of
~19%.

The remainder of this section describes results from
the simulation study. In many of the simulations, 250
PK SPs and a 10-cM density map were used. As discussed
above and shown in table 1, such a data set would pro-
vide sufficient power to limit false inclusions in confi-

Table 2

Number of PU Families Necessary to Satisfy the
Specifications.

No. OF FAMILIES AT POWER ="

da

(€M)  99%  95%  90%  85%  80%
6 7457 5365 4390 3,788 3,341
7 2,064 1,470 1,194 1,025 899
8 1,006 710 574 490 428
9 616 432 347 295 257
10 426 297 238 202 175
11 319 221 176 149 129
12 251 173 138 116 100
13 205 141 112 94 81
14 172 118 94 79 68
15 148 101 80 67 58

NOTE.—Numbers are computed from equation
(2), based on normal approximation.

*d,=5cM.

® For all levels of power, the coverage probability
of the confidence set is controlled to be 99%.
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Figure 1 Comparison of results from the LOD method and the

confidence-set approach. The top panel shows the results of using the
LOD method with a cutoff of 3.6. The height of each vertical line
represents the inferred frequency (per 1,000 replications) of linkage
of the marker (i.e., the frequency with which the null hypothesis of
no linkage was rejected). The bottom panel shows the results from the
confidence-set approach with 99% coverage probability. The height
of each vertical line represents the frequency with which the marker
was included in the confidence set. The two plots on the left are for
data with 50 PK SPs, whereas the two plots on the right are for data
with 250 PK SPs.

dence sets and therefore was chosen to be the primary
data structure in our simulation.

Confidence Sets, and Inference of Linkage by the LOD
Method

We compared conclusions drawn from analyses based
on the LOD method versus conclusions from analyses
based on the confidence-set approach. Note that these
two methods are based on the testing of “reversed” hy-
potheses; hence, they are not directly comparable in
terms of type I error or power. What we are comparing
are the implications, in terms of finding regions con-
taining disease genes, drawn from these two procedures,
especially their abilities to narrow the linkage regions
when more data are used. Results for two data sets are
shown in figure 1. The LOD method, with a cutoff of
3.6, rejected the null hypothesis of no linkage, for many
markers, even those not very close to the disease (fig. 1,
top two plots). In fact, as data accumulated (from 50
SPs to 250 SPs), most of the markers located on the
same chromosome as the disease were inferred to be
linked. Results from the confidence-set approach picked
up far fewer markers (fig. 1, bottom two plots) since
this approach is designed to detect tight linkages only.
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For the data sets with 50 SPs, the only marker (marker
15) <5 cM from the disease locus was inferred to be in
the confidence set in all the replications. In ~50% of the
replicates, one more marker (either marker 14 or 16)
was also included in the confidence set. In only ~1% of
the replicates was a marker as far as almost 20 cM from
the disease included in the confidence set. When the
number of SPs was increased to 250, the confidence set
contained only marker 15 in 85% of all the replications.
Marker 16 was 9 cM from the disease locus and was
included in 144 (~15%) of the confidence sets. Marker
14, on the other hand, was 11 cM from the disease locus
and was included in six (~1%) of the confidence sets.
These empirical results correspond well with the theo-
retical results given in table 1.

Figure 2 shows the distributions of the number of
markers inferred to be linked (LOD method) or tightly
linked (confidence-set approach). These histograms sum-
marize the results for all markers jointly rather than
individually. With just 50 SPs, typically 9 or 10 markers
(spanning a region of ~100 cM) were inferred to be
linked to the disease (fig. 2, top left). When more data
became available, the null hypothesis (which was not
true) was rejected much more often, implicating an
~170-180-cM region (fig. 2, top right). These results
demonstrate that, with the LOD method, although one

% 8
§ g
5 8 §
3 8
s 3
g.1_N - . A ]
6 8 10 12 14 14 16 18 20
38 :
38
< 8
z8
=
i :
S N
3
58 | §
E- - . i
2 0 2 4 6 -2 0 2 4 6
number of markers number of markers
Figure 2 Distributions of numbers of markers inferred to be

linked under the LOD method and the confidence-set approach. The
top panel shows the results of using the LOD method with a cutoff
of 3.6. The histograms display the distributions (per 1,000 replications)
of the number of markers inferred to be linked. The bottom panel
shows the results from the confidence-set approach with 99% coverage
probability. The histograms display the distributions of the number of
markers included in the confidence set. The two data sets are as de-
scribed in figure 1.



Lin et al.: A New Approach for Detection of Linkage

@
@ § m=15
e o
D
g @
=
c o e m=16
Q ©
(&)
£Q 7
8, .....
£ . e
o:) o - [ 2l
g o == e — ——e otherm's
o
95 99 99.9 99.99

Coverage Probability (%)

Figure 3 Effects of coverage probability on the number of mark-
ers in the confidence set. Each set of dots connected by lines represents
the relative frequency at which the marker was included in the con-
fidence set, over a range of coverage probabilities. The “Coverage
Probability” axis is not drawn to the scale and should simply be in-
terpreted as representing four categories.

is able to detect significant signals for linkage, it is not
possible to pinpoint the location of the disease locus,
especially when a large amount of data is available. With
the confidence-set approach, the bottom left histogram
in figure 2 shows that the set was never empty, and in
only 16 out of 1,000 replications did the set include four
markers. Typically, only two markers were included in
a confidence set; hence, the disease locus was pinpointed
to a 20-cM region, with =99% confidence. With 250
SPs, the maximum number of markers in any confidence
set dropped to two, and that occurred only 15% of the
time (fig. 2, bottom right). These results indicate that,
typically, the disease gene was inferred to be within a
10-cM region.

Coverage Probability

We investigated how increased coverage probability
may affect the number of markers contained in a con-
fidence set. Each data set consisted of 250 PU SPs. With
coverage probability controlled to be 95%, all the con-
fidence sets included marker 15 (fig. 3). Marker 16, the
marker next closest to the disease but >5 cM away, was
included ~10% of the time. There were also a few in-
stances in which the confidence sets included marker 14.
As the coverage probability increased, more confidence
sets contained two markers (up to >60% when the cov-
erage probability was =99.99%). Some even contained
three markers; however, even with 99.99% coverage
probability, only 12% of the confidence sets contained
three markers. Furthermore, none of the markers other
than the three that were closest to the disease were in-
cluded in any confidence set, even when the coverage
probability was nearly 100%. These results indicate that
increasing coverage probability for a given data set in-
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creases the number of markers included in the confidence
set, as expected; however, even with coverage probability
as high as 99.99%, the set is still small enough that
inferences about the disease-gene location can be made
rather precisely.

Map Density

The effects of marker spacing are presented in table
3. The disease locus was one-third of the way to marker
16 from marker 15. Three different marker densities—1
cM, 5 cM, and 10 cM—were studied for their effects
on confidence sets and on the conclusions drawn from
the confidence sets. For the PK data, the confidence sets
included marker 15, m*, >99% of the time, for all three
levels of map density. Although not all confidence sets
included marker 15, all confidence sets included at least
one of the three markers closest to the disease. However,
as marker spacing increases, the frequency with which
the confidence set includes markers other than m* de-
creases; for example, marker 14 (i.e., m* — 1) was in-
cluded in >50% of the confidence sets when the markers
were separated by 1 ¢cM but was included in only 1 of
the 1,000 confidence sets when the density of the mark-
ers was increased to 10 cM; in fact, at a 10-cM density,
none of the markers other than the three closest to the

Table 3

Marker-Spacing Effects on Confidence Sets

ESTIMATED PROBABILITY WHEN

INFERENCE ON
MARKER SPACING Is

CONFIDENCE

SET* I1cM 5cM 10cM 1cM 5S5cM 10cM
PK Data PU Data

Pm* € A) 998 1.0 1.0 998 999 1.0

Pm*+1 € A) 952 .874 742 954 857 797

Pm*—1¢€A) 533 .013 .001 521 .024 .002

Pim*+ 2 € A) 285 .003 284 .002

Pm*—2 € A) .059 .072

Pm*+3 € A) .030 .030

Pm*—3 € A) .004 .006

Pm*+4 € A) .002

P(me A) 1.0 1.0 1.0 1.0 1.0 1.0

max [#(A)]° 6 4 3 S 3 3

P[#(A) = 1] .020 125 258 .013 138 .202

P[#(A) = 2] 295 .861 741 316 .842 797

P[#(A) = 3] .503 .013 .001 484 .020 .001

P[#(A) = 4] 169 .001 165

P[#(A) = 5] .012 .022

P[#(A) = 6] .001

E[#(A)]* 2.861 1.890 1.733 2.867 1.882 1.799

* All probabilities are estimated by relative frequencies, which are
based on 1,000 replications. m* = marker 15, the marker closest to
the disease locus; 7" + 1 = the next closest, followed by m* — 1, etc;
m = either m*, m* — 1, or m* + 1.

> max([#(A)] = maximum number of markers inferred to be tightly
linked.

¢ E[#(A)] = average number of markers inferred to be tightly linked.
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disease locus were included in any confidence set, a fact
reflected by the blank entries in table 3. This makes
intuitive sense: as marker spacing increases, markers
other than m* become farther away from the disease,
and, thus, the chances that they will be inferred to be
tightly linked become smaller. The observations above
are based on marginal inferences for each marker. We
can make joint inferences for all markers as well. The
average number of markers inferred to be tightly linked
decreased with increasing marker spacing, from 2.86 for
1 cM to 1.73 for 10 ¢cM. The maximum number of
markers inferred to be tightly linked also decreased with
spacing. These observations hold true, qualitatively, for
the PU data type as well, as one can see in table 3.

The clear pattern of less-dense maps leading to smaller
confidence sets may give one a false impression that it
is better to use a coarse map to search for disease genes.
In general, it is still better to have a dense map even
when more markers may be falsely inferred to be tightly
linked; for instance, even when six markers were con-
tained in the confidence set when a 1-cM map (the most
extreme case in our simulation) was used, the disease
was still localized, with 99% confidence, to a small re-
gion of 6 ctM (6 x 1 cM); on the other hand, with a
10-cM map, although there may be only three markers
contained in a confidence set, the region in which one
needs to search for the disease gene was 30 cM (3 x
10 cM) long, five times longer than the region implicated
when a 1-cM map was used.

Disease-Gene Location

Various disease-gene locations between markers 15
and 16, at 0 cM, 1 cM, 2 cM, 3 cM, 4 cM, or 5 cM
from marker 15, were studied to determine their influ-
ences on confidence sets using the PK data type, and the
results are plotted in figure 4. None of the markers other
than 14, 15, or 16 were included in any confidence set,
regardless of the disease-gene location. When the disease
gene was placed on top of marker 15, most of the con-
fidence sets included only marker 15. Markers 14 and
16 each were included only ~5% of the time, matching
the theoretical results in table 1. When the disease was
placed farther away from marker 15 but closer to marker
16, marker 16 was included in the confidence sets more
often, as expected. Marker 15 was included in all con-
fidence sets, except at one disease location. The excep-
tion occurred when the disease was placed exactly half-
way between markers 15 and 16; in this case, both
markers were exactly 5 cM from the disease. The pro-
portion of times (per 1,000 replications) that markers
15 and 16 were included in the confidence set was only
97.8% and 97.9%, respectively—less than the specified
coverage probability—most likely because of the normal
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Figure 4 Effects of disease-gene location on the markers in-
cluded in the confidence set. Each dot represents the relative frequency
that the marker was included in the confidence set. Several disease-
gene locations, ranging from exactly at marker 15 (0 cM) to exactly
halfway between markers 15 and 16 (5 ¢cM), are presented.

approximation and/or Monte Carlo errors in the sim-
ulation. In this case, there are two markers that satisfy
the null hypothesis of tight linkage, but there is no need
for multiplicity adjustment since we are interested only
in the inclusion of at least one of the markers, which,
in this case, occurred in 100% of the replicates. In fact,
none of the markers other than 15 or 16 were included
in any confidence set. These results indicate that the lo-
cation of the disease gene relative to the two flanking
markers does not have a great influence on the number
of markers contained in a confidence set.

Discussion

In the present study, we propose a confidence-set ap-
proach for finding tightly linked genomic regions for
genome-scan studies. There are two main advantages of
this approach. First, we formulate our null hypotheses
to correspond to tight linkage to ensure that we need
not be concerned with the multiplicity-adjustment prob-
lem, which is caused by screening a large number of
markers. Second, using this method, one can identify
sufficiently localized genomic regions for linkage, so that
the need for efforts at further localization is greatly re-
duced after an initial screen. This approach can thus be
viewed as a way of combining an initial scan with fine
mapping.

A general principle of multiplicity adjustment is that
multiplicity need be adjusted only to the extent that the
null hypotheses being tested may be true simultaneously;
for example, in average bioequivalence studies, even
though two one-sided tests are performed simultaneously,
no multiplicity adjustment is needed, because it is im-
possible to deliver both too much and too little of the
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test drug (as compared with the reference drug) at the
same time (Berger and Hsu 1996); as another example,
in some dose-response studies, step-down testing of ef-
ficacy at decreasing doses requires no multiplicity ad-
justment, because there is, at most, one minimum effec-
tive dose (Hsu and Berger 1999). This general principle
implies that, when a genetic disorder involves a single
disease gene, no multiplicity adjustment is needed, no
matter how many markers throughout the genome are
tested one by one. The procedure produces a confidence
set that includes a marker that is, at most, d, from the
disease locus with probability p (usually controlled to be
=99%). In the description of the method, for ease of
presentation, we assume that there exists in the genome
a unique marker that is located <d, from the disease
locus. This assumption is not necessary, as is demon-
strated in one of the simulations in which the disease
locus was placed exactly halfway between two markers.
The probability that at least one of the markers located
within distance d, is included in the confidence set is
greater than the probability that any one of these markers
is included in the set, which is controlled to be at least
p. A confidence set for the location of the disease gene
can also be constructed directly (Rogers et al. 2001).
Now, suppose that the manifestation of a disease in-
volves g genes spread throughout the genome, where
some disease genes may be linked to one another. Assume
that we have a map of markers covering the whole ge-
nome and that there exists a unique marker »z; located
within d,, from disease gene i, i = 1,+*-,g. The assump-
tion of uniqueness—which is, again, not necessary, as
discussed in the previous paragraph—is used for ease of
presentation. Suppose that A is the confidence set to be
constructed, such that the probability that A includes all
mi,i =1,-+,g isatleastp ( = 1 — B) . Further suppose
that we set the probability of false rejection of a tight
linkage to be 8*. Then the genomewide coverage prob-
ability of all g genes is at least 1 — g8*. Hence we can
set 8 = B/g to achieve a genomewide coverage proba-
bility of at least 100(1 — 8)%, a Bonferroni-like argu-
ment. This is, of course, a very crude approximation,
especially when the disease genes are linked; thus, more-
sophisticated statistical methods need to be developed.
Nonetheless, the simple argument above shows that, al-
though we may be screening the genome for thousands
of markers when trying to detect signals for linkage, we
do not need to adjust for thousands of tests in order to
avoid too many false declarations of linkage. We only
need to adjust the confidence level (or type I error, in our
formulation of the tests) for the number of genes that
may be involved in a disease; for example, if 10 genes
are assumed to be involved in the manifestation of a
disease, then a genomewide coverage probability of 99%
implies a 99.9% coverage probability for each disease
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locus. If the number of genes is actually smaller than the
initial guess, the procedure will be conservative, in that
the confidence set will include more markers than nec-
essary. One possible approach toward estimating the
number of genes that may be involved—and, thus, to
attaining a better multiplicity adjustment—is through a
two-stage procedure: first, the confidence set is con-
structed according to an initial guess as to the number
of genes involved (usually assumed to be higher than
what is anticipated—say, 10); then the number of “well-
defined” genomic regions that are included in the con-
fidence set is taken to be the number of disease genes,
and a new confidence set is constructed. We caution,
though, that such a two-stage approach will be anticon-
servative if some disease genes are closely linked.

Our procedure is designed to find markers that are
tightly linked to disease genes. The sizes of the impli-
cated genomic regions depend on factors such as the
amount of data available and the density of the marker
map. The probability that is being controlled is the cov-
erage probability. To have high confidence that potential
disease loci will not be missed, we recommend setting
the coverage probability to be =99 %, genomewide. The
true coverage probability is usually higher than the level
that is set, especially if the distance from the marker to
the disease is smaller than the maximum allowable dis-
tance. Even with such high coverage probability, results
from our simulation study indicate that a typical con-
fidence set would include only a very small number
(although usually larger than the targeted number) of
markers, with a reasonable amount of data. Further-
more, the more data we have, the more precisely our
procedure is able to predict the disease-gene location,
a good property that the LOD method does not possess.
We recognize that a single study with two simple data
types does not warrant general conclusions; thus, fur-
ther studies investigating the properties of the proposed
procedure for general genetic data and models are
needed, but the results from the study thus far are ex-
tremely encouraging. Finally, we note that our method
is applicable even when the disease is not genetic. In
such cases, an empty set is highly desirable, since one
can then infer that the disease is not affected by any
gene. With a sufficient sample size, there is a high prob-
ability that our confidence set is empty when the disease
is not genetic.
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Appendix A
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Let f, be the probability mass function of S,, = >%_, min{X,,2 — X,}. Then,

f;,m(t) = (n)zt(am — 93{)!(1 —20, + 2031)7;—:, t=0,1,",nm.

t

It follows that, for 0 < 0, <6, < 3, the likelihood ratio

(0, — 60;)(1 — 20, + 267))

fo,(2) 1— 26, + 267

ft) (1 — 20, + 2022)"[

(0, — 07)(1 — 26, + 263)

is increasing in ¢, since the expression in the square brackets is >1. Thus, the family of distributions {f, (¢):6,, €
[0,1/2]} has a monotone likelihood ratio in t. Lemma 2 of Lehmann (1986, p. 85) then implies that, for any
0, <0, B, (S, >t) <DP(S, >1t). Consequently, sup, _, P, (S,,>1t) = F,(S,, >1).
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